Syllabus for
B Sc in Textile Engineering
Session 2013-2014

November 2013
University of Rajshahi
Faculty of Engineering
Department of Textile Engineering
Syllabus for B Sc in Textile Engineering Session: 2013-2014

The courses designed for B Sc in Textile Engineering consist of 4000 marks of 160 credits (40 units×4 credits, each unit carries 100 marks and 4 credits) distributed over eight semesters in four academic years. Each academic year is divided into two semesters (odd & even) each of duration not less than 11 weeks (66 working days). There shall be final examinations at the end of each semester. The medium of answer in all examinations will be either Bangla or English, but not the mixer of both. The theoretical examination of courses less than or equal to 2 credits shall be of 2 hours duration and courses greater than 2 credits shall be of 3 hours duration. An academic schedule for an academic year shall be announced for general notification before the start of the academic year, on the prior approval of the academic committee.

1. Attendance (Ref. The Rajshahi University Academic Ordinance (RUAO), 2013 for B. Sc in Engineering Curriculum in Colleges/Institutes Affiliated with RU, article no: 13): In order to be eligible to appear, as a regular candidate, at the semester final examinations, a student shall be required to have attended at least 70% of the total number of periods of lectures/tutorials/laboratory classes offered during the semester in every course. A student whose attendance falls short of 70% but not below 60% in any course may be allowed to appear at the final Examinations as non-collegiate student and he/she shall not be eligible for the award of any scholarship or stipend for the following academic year/semester. A student, appearing the examination under the benefit of this provision shall have to pay in addition to the fees, the requisite fee prescribed by the syndicate for the purpose. Students having less than 60% attendance in lectures/tutorials/laboratory classes of any course will not be allowed to appear in the final examinations of the semester. The basis of awarding marks for class participation and attendance is shown in Table-1.

Table-1: Distribution of Marks in Attendance

<table>
<thead>
<tr>
<th>Attendance</th>
<th>Marks %</th>
<th>Remarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>90% and above</td>
<td>100</td>
<td>Regular</td>
</tr>
<tr>
<td>85% to less than 90%</td>
<td>90</td>
<td></td>
</tr>
<tr>
<td>80% to less than 85%</td>
<td>80</td>
<td></td>
</tr>
<tr>
<td>75% to less than 80%</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>70% to less than 75%</td>
<td>60</td>
<td></td>
</tr>
<tr>
<td>65% to less than 70%</td>
<td>50</td>
<td>Non-collegiate</td>
</tr>
<tr>
<td>60% to less than 65%</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>less than 60%</td>
<td>00</td>
<td></td>
</tr>
</tbody>
</table>

(Ref. The Rajshahi University Academic Ordinance (RUAO), 2013 for B. Sc in Engineering Curriculum in Colleges/Institutes Affiliated with RU, Article no.13), unit=100 marks
2. The Grading System

The letter grade system shall be used to assess the performance of the students as shown in Table-2 (Ref. The Rajshahi University Academic Ordinance (RUAO), 2013 for B. Sc in Engineering Curriculum in Colleges/Institutes Affiliated with RU, Article no. 14.1):

Table-2: Letter Grade System

<table>
<thead>
<tr>
<th>Numerical grade</th>
<th>Letter Grade (LG)</th>
<th>Grade point (GP)(G_i)</th>
<th>Credit (C_i)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80% or above</td>
<td>A+</td>
<td>4.0</td>
<td>4</td>
</tr>
<tr>
<td>75% to less than 80%</td>
<td>A</td>
<td>3.75</td>
<td>4</td>
</tr>
<tr>
<td>70% to less than 75%</td>
<td>A-</td>
<td>3.5</td>
<td>4</td>
</tr>
<tr>
<td>65% to less than 70%</td>
<td>B+</td>
<td>3.25</td>
<td>4</td>
</tr>
<tr>
<td>60% to less than 65%</td>
<td>B</td>
<td>3.0</td>
<td>4</td>
</tr>
<tr>
<td>55% to less than 60%</td>
<td>B-</td>
<td>2.75</td>
<td>4</td>
</tr>
<tr>
<td>50% to less than 55%</td>
<td>C+</td>
<td>2.5</td>
<td>4</td>
</tr>
<tr>
<td>45% to less than 50%</td>
<td>C</td>
<td>2.25</td>
<td>4</td>
</tr>
<tr>
<td>40% to less than 45%</td>
<td>D</td>
<td>2.0</td>
<td>4</td>
</tr>
<tr>
<td>less than 40%</td>
<td>F</td>
<td>0.0</td>
<td>4</td>
</tr>
<tr>
<td>Incomplete</td>
<td>I</td>
<td>0.0</td>
<td>4</td>
</tr>
</tbody>
</table>

A letter grade ‘I’ (incomplete) shall be awarded for courses in the odd semester which continue through to the even semester.

A Grade Point average (GPA) shall be calculated for each semester as follows:

\[
GPA = \frac{\sum C_i G_i}{n} = \frac{\sum C_i}{n} (i)
\]

Where, \(n \) is the number of courses offered during the semester, \(C_i \) is the number of credits allotted to the i-th course and \(G_i \) is the grade point earned for that course.

Illustration: Suppose a student obtained following grade in Part-1 odd semester:

<table>
<thead>
<tr>
<th>Code No</th>
<th>Subject</th>
<th>Credit</th>
<th>Letter Grade</th>
<th>GP</th>
</tr>
</thead>
<tbody>
<tr>
<td>PHY 1111</td>
<td>Physics-1</td>
<td>4</td>
<td>C</td>
<td>2.25</td>
</tr>
<tr>
<td>CHEM 1113</td>
<td>Chemistry-1</td>
<td>4</td>
<td>A+</td>
<td>4</td>
</tr>
<tr>
<td>MATH1115</td>
<td>Mathematics-1</td>
<td>4</td>
<td>B-</td>
<td>2.75</td>
</tr>
<tr>
<td>TE 1111</td>
<td>Introduction to Textile Engineering</td>
<td>6</td>
<td>B+</td>
<td>3.25</td>
</tr>
<tr>
<td>CE 1112</td>
<td>Engineering Drawing</td>
<td>2</td>
<td>A+</td>
<td>4</td>
</tr>
</tbody>
</table>

Therefore, GPA in the Part-1 odd semester is \(\frac{4(2.25)+4(4)+4(2.75)+6(3.25)+2(4)}{4+4+4+6+2} = 2.40 \)

And let’s assume that his/her GPA in Part-1 even semester is \(3.13 \)

Therefore, YGPA of Part-1 examination is \(\frac{20 (2.40) + 20(3.13)}{20+20} = 2.77 \)
The **Cumulative Grade Point Average (CGPA)** gives the cumulative performance of students from the first year up to the end of the fourth year to which it refers, and will be calculated as follows:

\[
\text{GPA} = \frac{\sum_{k=1}^{m} C_k G_k}{\sum_{k=1}^{m} C_k} \tag{ii}
\]

where, \(m\) is the total number of years being considered, \(C_k\) is the total number of credits registered during the \(k\)-th year and \(G_k\) is the YGPA earned in that particular year.

Similarly assume that, the YGPA of the student for the other 3 Parts are as follows:

<table>
<thead>
<tr>
<th>Year</th>
<th>Credit</th>
<th>YGPA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part-II</td>
<td>40</td>
<td>3.47</td>
</tr>
<tr>
<td>Part-III</td>
<td>40</td>
<td>2.96</td>
</tr>
<tr>
<td>Part-IV</td>
<td>40</td>
<td>3.33</td>
</tr>
</tbody>
</table>

Then his/her CGPA of four academic years is

\[
\text{CGPA} = \frac{40(2.77)+40(3.47)+40(2.96)+40(3.33)}{40+40+40+40} = 3.13
\]

(Both YGPA & CGPA will be rounded up to the second place of decimal for reporting. For instance, YGPA= 2.212 shall be rounded up as YGPA=2.22)

3. Earned Credit

The courses in which a student has obtained minimum ‘D’ in ‘Theoretical courses’ and ‘C’ in ‘Laboratory courses & Board Viva-Voice’ or higher grade will be counted as credits earned by the student. Any course in which a student has obtained ‘F’ grade will not be counted towards his/her earned credit. ‘F’ grade will not be counted for GPA calculation but will stay permanently on the Grade sheet and Transcripts.

4. Marks and Credits distribution for B Sc in Textile Engineering

The distribution of marks & credits in various Definitions of Disciplines in the ordinance for B Sc Engineering Degree in the Department of Textile Engineering are given in Table-3 [Ref. The Rajshahi University Academic Ordinance (RUAO), 2013 for B Sc in Engineering Curriculum in Colleges/Institutes Affiliated with RU, Article no 6.1]
<table>
<thead>
<tr>
<th>Course Type</th>
<th>Marks</th>
<th>Marks (%)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>a Humanities</td>
<td>250</td>
<td>6.25%</td>
<td>10</td>
</tr>
<tr>
<td>b Mathematics & Basic Sciences (with Laboratory)</td>
<td>1150</td>
<td>28.75%</td>
<td>46</td>
</tr>
<tr>
<td>Basic and Major Engineering</td>
<td>2600</td>
<td>65%</td>
<td>104</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Distribution</th>
<th>Basic and Major Engineering:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Theoretical</td>
</tr>
<tr>
<td></td>
<td>2800</td>
</tr>
<tr>
<td></td>
<td>Laboratory</td>
</tr>
<tr>
<td></td>
<td>Board Viva-Voice</td>
</tr>
</tbody>
</table>

| Total | 4000 | 100 | 160 |

*a Each department must include course on English and b Each department must include courses on Physics, Chemistry and Mathematics. 1 unit course carries 4 credits (100 marks), 0.75 unit course carries 3 credits (75 marks) and half unit course carries 2 credits (50 marks). For other fractions of credit, proportionality shall be applied.
5. Courses offered to the undergraduate students of Textile Engineering Department for B Sc Engineering degree (Session 2012-2013)

Table-4: Part-1 Odd semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Credit Hours</td>
<td>Contact Hours</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>PHY 1111</td>
<td>Physics-1</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>PHY 1112</td>
<td>Physics-1 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CHEM 1113</td>
<td>Chemistry-1</td>
<td>3</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>CHEM1114</td>
<td>Chemistry-1 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MATH1115</td>
<td>Algebra, Trigonometry, Analytic Geometry and Differential Calculus</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 1111</td>
<td>Introduction to Textile Engineering</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>TE 1112</td>
<td>Introduction to Textile Engineering Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CE 1112</td>
<td>Engineering Drawing</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>HUM 1117</td>
<td>English</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

No. of Theory Course : 05
No. of Sessional Course : 04
Total Contact Hours : 25.0
Total Credit Hours : 20.00

Table-5: Part-1 Even semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Credit Hours</td>
<td>Contact Hours</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>PHY 1211</td>
<td>Physics-2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>PHY 1212</td>
<td>Physics-2 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>CHEM1213</td>
<td>Chemistry-2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CHEM1214</td>
<td>Chemistry-2 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>MATH 1215</td>
<td>Integral Calculus, Differential Equations, Vector Analyses and Mathematical Methods</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 1211</td>
<td>Textile Raw Material – 1</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TE 1212</td>
<td>Polymer Science</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>CE 1211</td>
<td>Engineering materials and Practices</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>CE 1212</td>
<td>Engineering materials and Practices Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
<td>17</td>
<td>3</td>
</tr>
</tbody>
</table>

No. of Theory Course : 06
Total Contact Hours : 23.0
No. of Sessional Course : 03
Total Credit Hours : 20.00
Table-6: Part-2 Odd semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 2111</td>
<td>Yarn Manufacturing -1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2112</td>
<td>Yarn Manufacturing -1 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2113</td>
<td>Fabric Manufacturing -1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2114</td>
<td>Fabric Manufacturing -1 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2115</td>
<td>Textile Raw Materials-2</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2117</td>
<td>Textile Testing and Quality Control-1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>STAT 2111</td>
<td>Statistics</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 2111</td>
<td>Elements of Mechanical Engineering and Machine Design</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ME 2112</td>
<td>Elements of Mechanical Engineering and Machine Design Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>15</td>
<td>4</td>
<td>8</td>
<td>20</td>
<td>23</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. of Theory Course : 06
No. of Sessional Course : 04

Total Contact Hours : 23.0
Total Credit Hours : 20.00

Table-7: Part-2 Even semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TE 2211</td>
<td>Wet Processing -1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2212</td>
<td>Wet Processing -1 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2213</td>
<td>Garments Manufacturing -1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2214</td>
<td>Garments Manufacturing -1 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2115</td>
<td>Fabric Structure and Design</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2216</td>
<td>Fabric Structure and Design Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TE 2217</td>
<td>Textile Physics-1</td>
<td>3</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE 2211</td>
<td>Elements of Electrical Engineering and Electronics</td>
<td>2</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EEE 2212</td>
<td>Elements of Electrical Engineering and Electronics Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CSE 2211</td>
<td>Computer Science</td>
<td>0</td>
<td>0</td>
<td>2</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>14</td>
<td>6</td>
<td>12</td>
<td>20</td>
<td>26</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

No. of Theory Course : 05
No. of Sessional Course : 05

Total Contact Hours : 26.0
Total Credit Hours : 20.00
Table-8: Part-3 Odd semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Credit Hours</td>
<td>Contact Hours</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>TE 3111</td>
<td>Yarn Manufacturing -2</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 3112</td>
<td>Yarn Manufacturing -2 Sessional</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TE 3113</td>
<td>Fabric Manufacturing -2</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 3114</td>
<td>Fabric Manufacturing -2 Sessional</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TE 3117</td>
<td>Textile Testing and Quality Control-2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>TE 3118</td>
<td>Textile Testing and Quality Control-2 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>HUM 3111</td>
<td>Industrial Psychology and Management</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>14</td>
<td>14</td>
<td>5</td>
</tr>
</tbody>
</table>

- No. of Theory Course: 04
- Total Contact Hours: 24.0
- No. of Sessional Course: 03
- Total Credit Hours: 20.00

Table-9: Part-3 Even semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Credit Hours</td>
<td>Contact Hours</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>TE 3211</td>
<td>Wet Processing -2</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 3212</td>
<td>Wet Processing -2 Sessional</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TE 3213</td>
<td>Garments Manufacturing -2</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 3214</td>
<td>Garments Manufacturing -2 Sessional</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TE 3217</td>
<td>Textile Physics-2</td>
<td>3</td>
<td>3</td>
<td>0</td>
</tr>
<tr>
<td>HUM 3211</td>
<td>Sociology</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TE 3215</td>
<td>Application of Computer in Textile</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TE 3216</td>
<td>Application of Computer in Textile Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>15</td>
<td>15</td>
<td>5</td>
</tr>
</tbody>
</table>

- No. of Theory Course: 05
- Total Contact Hours: 25.0
- No. of Sessional Course: 03
- Total Credit Hours: 20.00
Table-10: Part-4 Odd semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Credit Hours</td>
<td>Contact Hours</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>TE 4111</td>
<td>Advanced Yarn/Fabric/Wet processing/ Garments Manufacturing</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 4112</td>
<td>Advanced Yarn/Fabric/Wet processing/ Garments Manufacturing Sessional</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>TE 4113</td>
<td>Textile Testing and Quality Control-3</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>TE 4114</td>
<td>Textile Testing and Quality Control-3 Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>IPE 4111</td>
<td>Production Planning and Control</td>
<td>5</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>HUM 4111</td>
<td>Industrial Economics, Accounting and Marketing</td>
<td>4</td>
<td>4</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>17</td>
<td>17</td>
<td>3</td>
</tr>
</tbody>
</table>

No. of Theory Course : 04
No. of Sessional Course : 02
Total Contact Hours : 23.0
Total Credit Hours : 20.00

Table-11: Part-4 Even semester

<table>
<thead>
<tr>
<th>Code No.</th>
<th>Name of Subject</th>
<th>Theory</th>
<th>Sessional</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Credit Hours</td>
<td>Contact Hours</td>
<td>Credit Hours</td>
</tr>
<tr>
<td>TE 4211</td>
<td>Special Yarn/Fabric/Wet processing/ Garments Manufacturing</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TE 4212</td>
<td>Special Yarn/Fabric/Wet processing/ Garments Manufacturing Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TE 4213</td>
<td>Utility Services and Maintenance of Textile Machineries</td>
<td>2</td>
<td>2</td>
<td>0</td>
</tr>
<tr>
<td>TE 4214</td>
<td>Utility Services and Maintenance of Textile Machineries Sessional</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>TE 4216</td>
<td>Project Work</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>TE 4218</td>
<td>Industrial Attachment</td>
<td>0</td>
<td>0</td>
<td>8</td>
</tr>
<tr>
<td>TE 4210</td>
<td>Comprehensive Viva</td>
<td>0</td>
<td>0</td>
<td>3</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>4</td>
<td>4</td>
<td>16</td>
</tr>
</tbody>
</table>

No. of Theory Course : 05
No. of Sessional Course : 03
Total Contact Hours : 36.0
Total Credit Hours : 20.00
6. **Rules for Promotion** (Ref: The Rajshahi University Academic Ordinance (RUAO), 2013 for B Sc in Engineering Curriculum in Colleges/Institutes Affiliated with RU, Article no. 15):

There shall be final examinations conducted by the Examinations Conducting Committee of the college/institute at the end of each semester. The results shall be finalized at the end of the even semester of the academic year. A student entering in an odd semester shall automatically move on to the next semester, unless she/he was debarred from appearing at the final examinations at the end of the semester. Individual course grades and GPA shall be announced within a date ordinarily not later than three weeks after the end of the semester final examinations.

6.1 **Minimum passing grade:** The minimum passing grade in a theoretical course will be D and the minimum passing grade in a laboratory/project/field work/in-plant training/ workshop/ similar Courses (henceforth referred to as laboratory course) and Viva-voce will be C.

6.2 **Promotion to higher class:** A student who has a grade point average of 2.25 or higher and no F grade in the theoretical courses and not less than C grade in the laboratory courses and viva-voce of the two semesters shall be promoted to the next higher class.

6.3 There shall be no refereed in laboratory courses and viva-voce. A student failing to secure a minimum C grade in any of the laboratory courses and Viva-voce in any semester will not pass in that year.

6.4 **Course Improvement:**

6.4.1 **Referred (with ‘F’):** A student who has a grade point average of 1.7 or higher, with ‘F’ grade in the theoretical courses, not more than 10 credit points in an academic year shall be awarded Referred up to 10 credits in the courses where less than B grade (including F grade) were obtained and he/she may appear at a supplementary examination in those courses only. In such case the student has to give his/her choice of course/courses for supplementary examination in writing.

6.4.2 **Referred (with no ‘F’):** A student having grade point average of less than 2.2 and no ‘F’ grade in theoretical courses may appear at a supplementary examination in not more than 10 credit points in an academic year, only for courses in which less than B grade was obtained. In such case the student has to give his/her choice of course/courses for supplementary examination in writing.

6.4.3 **Promotion of Referred student to higher Class:** In order to be promoted to the next higher class, a student must obtain a grade point average of 2.2 with no less than D grade in any of the courses in which he/she appeared in supplementary examination.

6.4.4 Grades obtained by a student in the courses in which s/he appeared at the supplementary examination will be recorded for assessment and the grade obtained by him/her in those courses at the regular final examination shall automatically be treated cancelled.

6.4.5 Clause 6.4.4 is not valid for a candidate, who cannot improve his/her course grade at the supplementary examination, in that case the previous grade shall remain valid.

6.4.6 **Improvement of YGPA:** A candidate obtaining an YGPA of less than 2.75 at the end of the academic year shall be allowed to sit for supplementary examination up to a maximum of 8 credit points of (courses in where less than ‘B’ grade was obtained) theoretical courses in the academic year. No improvement shall be allowed for laboratory examination and Board Viva-voce. If a candidate fails to improve YGPA with the block of new GP in total, the previous YGPA shall remain valid.

6.4.7 All **Referred examinations** shall ordinarily be held during the inter-session break. This break may also be utilized for industrial attachment training or survey Sessional , etc.

6.5 **Course Exemption:** students who fail to be promoted to the next higher class shall be exempted from taking the theoretical and laboratory courses where they obtained grades equal to or better than B. These grades would be counted in calculating GPA in the next year’s examination results.

6.6 **Merit Position:** The YGPA obtained by a student in the semester final examinations will be considered for determining the merit position for the award of scholarships, stipends etc.
7. **Publication of Results:**

7.1 A student must successfully complete the courses of all the semesters within a maximum of seven academic years as outlined by the Committee of Courses with all its pre-requisites in order to be eligible for the award of B Sc Engineering degree. The student must earn 160 credits (no ‘F’ grade) and CGPA 2.25 or higher.

7.2 **Merit position:** Merit position of a student for each academic year of each degree) awarding department shall be determined on the basis of his/her YGPA of that particular year. Merit position for the award of the degree of B Sc Engineering will be based on CGPA of all the academic years.

7.3 **Honours:** Candidates for Bachelor’s degree in engineering will be awarded the degree with Honours if their CGPA is 3.75 or higher.

7.4 **Result Improvement:** A candidate obtaining a CGPA of less than 2.75 at the end of Part-IV even semester examinations, within 4 or 5 academic years shall be allowed to improve his/her result, of up to a maximum 4 units (courses less than B grade) of the Part-IV, maximum 2 units from any one semester of the year, theoretical courses in the immediate next regular examination after publication of his/her result. No improvement shall be allowed for laboratory examinations and Board Viva-voce. If a candidate fails to improve CGPA with the block of new GP in total, the previous result shall remain valid.

7.5 **Dean’s List:** As a recognition of excellent performance, the names of students obtaining a cumulative GPA of 3.75 or above in two regular semesters in each academic year may be published in the Dean’s List in the faculty. Students who have received an ‘F’ grade in any course during any of the two regular semesters will not be considered for Dean’s List in that year.

7.6 **Industrial and Professional Training Requirements:** Depending on each department’s own requirements, a student may have to complete a prescribed number of days of industrial/professional training in addition to minimum credits and other requirements, to the satisfaction of the concerned department.

7.7 **Recording of Results:** The overall results of a successful student covering all semesters’ examinations of four years shall be declared on the basis of CGPA with the corresponding Letter Grade (LG). The transcripts in English will show the course designation, course title, credit, grade and grade point of individual courses. YGPA of each year, CGPA and corresponding LG for the overall result.

8. **Eligibility for Examination:**

8.1 A candidate may not be admitted to any semester final examinations unless he/she has

8.1.1 Submitted to the registrar/ Vice-Chancellor an application in the prescribed form for appearing at the examination.

8.1.2 Paid the prescribed examination fees, and all outstanding college/institute dues.

8.1.3 Fulfilled the conditions for attendance in class and

8.1.4 Been barred by any disciplinary rule.

8.2 On special circumstances the Vice-Chancellor may permit a student to appear at the examination.

8.3 A student whose attendance falls short of 70% but not below 60% in any course as mentioned above may be allowed to appear at the final examinations as a non-collegiate student.
B Sc in Textile Engineering
Part-1 odd semester

PHY 1111 Physics-1

Theory: Credit Hours- 3
Contact Hours/week 3 + 0

Surface Tension: Surface tension, Molecular theory of surface tension. Surface tension and surface energy, Excess pressure across a curved film, Capacity and angle of contact, Determination, of surface tension

Light: Wave theory, Huygens principle of Rectilinear propagation of light, interpretation of law reflection and refraction by hyphen s principle interference Young s experiment determination of wave length light by bi prism Newton s nag Colors of thin films Diffraction grating and its u Zone plate, X-ray diffraction, Polarizations, Polarization by reflection, Brewster’s law, Double refraction, Nicola's prism, Colorimeter.

Book References
1. Outlines of-Physics by Dr. Glassed-in Ahmed
2. Physics by David Holliday & Robert Ransack

PHY 1112 Physics-1 Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2

General Physics
1. To determine the ‘g’ by compound pendulum
2. To determine the Young’s modulus for the material of a wire by venire method.
3. To determine the rigidity modulus for the maternal of a wire by oscillation or dynamical method
4. To determine the surface tension of water by capillary tube
5. To determine the co-efficient of viscosity of liquid by its flow through a capillary tube
6. To determine the density of water of vinous temperature by specific gravity bottle.

Light
1. To determine the focal length and hence power of a convex lens by the method of displacement using an optical bench and to verify the result by graphical method
2. To determine the focal length and hence power of a concave lens using an auxiliary convex lens
3. To determine the refractive index of a liquid by plane mirror and pin method using a convex lens.
4. To determine (i) the radius of curvature of a lens and (ii) the refractive index of the material of the lens by Boy’s method,
5. To determine the radius of curvature of a lens by Newton’s rings.
Theory: Credit Hours- 3

The structure of Atom:
Rutherford and Bohr’s atom model with its limitation, Quantum number and atomic orbital, Distribution of electron in the atoms of elements, Paula's Exclusion Principle; Aruba principle, Heisenberg uncertainty principle, Hand's rule, electronic configuration of the elements. Nuclear Chemistry: Nuclear reactions, Mass number, Atomic unit defect, Nuclear ‘binding energy, Nuclear fission and fusion, Radioactivity, Radioactive decay, Half life.

The Chemical Bond:
Electronic theory of chemical bond, the concept of balancing ionic and coordinate bond.

Pollution and its effects in the living world
The atmosphere and its structure, Types of pollutants, Air pollution, green house effect, Acid rain, photochemical smog, Prevention and control, Water pollution, Noise Pollution, Treatment of Industrial effluents and wastes, Industrial hazards and precautions.

Complex Compound
D theories, Structure, Isomerism and applications.

Physical Chemistry
Theory of dilute solution: Colligate Properties
- Lowering of vapor pressure
- Elevation of boiling point
- Depression of freezing point
- Osmosis and osmotic pressure, Deduction of their formulae and molecular weight from Ragouts law.

Chemical Equilibrium.
Law of mass action, Equilibrium constant, Application of law of mass action to s chemical reaction,
Heterogeneous equilibrium, Le-chatelier principle and its application to industrial reactions.

Chemical Kinetics:
Rate of reaction order and molecular. Zero order reaction, 1st and 2 order reaction with its mathematical formulation, Determination of order of reaction, Activation energy. Activation complex.

Colloids and Colloidal Solution
Classification, Preparation and purification. Properties. Proactive action and application of colloids

Photochemistry:
Law of photochemistry, Quantum yield, Decomposition of hydrogen halide, Photosensitized reaction,
Fluorescence and phosphorescence, Luminescence and Chemilumines Cense.

Book References:
1. Modern Inorganic Chemistry by R.D. Madan
2. General Chemistry by Ebbing
3. Environmental Chemistry by A.K.Dey
4. Physical Chemistry by G.L. Glaston
5. Environmental Chemistry by H.Kanr and BK. Shrma
6. Basic Inorganic Chemistry by F. Albert & Paul L. Gaus
7. Basic Inorganic Chemistry by Cotton, Wilkinson & Gaus S
8. Essential of Physical Chemistry by B.S. Bahl, G D. Tuli & Arun Bahl
9. Principles of Physical Chemistry by Haque & Nawab S
10. A text book of Environmental Chemistry by S.S. Dara
CHEM 1114 Chemistry-1 Sessional

- **Sessional: Credit Hours- 1**

- Qualitative analyses of inorganic mixtures containing not less than three radicals including insoluble and interfering radicals.

- **Volumetric Analyses:**
 - Preparation of 0.1 M HCl and Standardization
 - Preparation of 0.1M Noah and standardization

- **Inorganic Preparation**
 - Preparation of potassium dichromate
 - Preparation of chrome alum
 - Preparation of ferrous ammonium soleplate
 - Preparation of potassium permanganate

MATH 1115 Algebra, Trigonometry, Analytic Geometry and Differential Calculus

Theory: Credit Hours- 4

- **Algebra:** Matrix, adjoint, inverse, Rank of matrix, determinants, Convergence and divergence: Inequalities, Theory of equations, Sets and functions.
- **Trigonometry:** Decoyer's theorem, Deduction from demise (s theorem: Complex arguments, Gregory's series, Summation of series, Hyperbolic Functions
- **Analytic Geometry:** Transformation of co-ordinates, Pair of straight lines, General edge, of 2nd degree, Circle, system of circle, conic section. Co-ordinates, Direction cosines, Projections, The plane, the straight line, sphere cone.

Book References:
1. Differential Calculus by B. C. Das & B. N. Mukherjee
2. Differential Calculus by Abu Yusuf
3. Differential Calculus by M. A. Matin & B.B. Chakravarty
4. Linear Algebra by Md. Abdur Rahnna
5. Set Theory by S. Lipschutz.
6. Higher Algebra by Hall and knight.

TE 1111 Introduction to Textile Engineering

Theory: Credit Hours- 3

- Different terms and definition of textiles, Study of textile sector in Bangladesh. An introduction to the historical development of fabric, yarn, thread, filament, fabric etc. processes industry, its application and products.
- **Yarn Manufacturing:**
 - Ginning, Mixing and Blending. Flow chart of different spinning processes, different terms related to cotton and jute spinning, spinning process and machinery used for different spinning and working 'principle of individual Cotton and Jute spinning machinery.
Fabric Manufacturing:
Different basic terms of weaving process, preparatory of weaving process (winding, warping, sizing, drafting and denting) and its functional effects. Flow chart of weaving process, Basic principle of weaving, weaving process and machines, motions of loom, difference between weaving and knitting, knitting process and machines, non-woven fabric formation. Wet Processing : Flow-Chart of wet Processing, Flow-Chart of dyeing and printing for cotton, Synthetic and cotton synthetic blended fabric, Preparatory process for different textile goods for proper wet processing according to flow-chart, Basic concept of dyes and chemicals used in textiles, Basic concept of theory of dyeing, Different machinery used in woven and knit dyeing industry, Dyeing, printing and finishing process of major types of fabrics.

Garments Manufacturing:
A brief history of the development of the garments industry with particular reference to Bangladesh Garments Industry. Nomenclature of different types of garments. Flow chart of garments manufacturing process, Basic idea of pattern making sample making, marker making, cutting, sewing, Trimming and garments finishing.

Book References:
1. Textile Terms and Definition by Melintyre, J.E.
2. Dyeing and Chemical Technology of Textile Fibres by ER. Trotman
3. Modern Techniques of Textile Dyeing, Bleaching & Finishing by S.M. Arora
4. Textile Fibers, Dyes & Processes by Howard L. Needles
5. Textiles: Fiber to Fabric by Corbman, Bernard P
6. General Technology of Cotton Manufacturing (Mir Publisher) by PT. Bukayer
7. General Textile Processing by Abu sina Md. Ruknul Quader

TE 1112 Introduction to Textile Engineering Sessional

Sessional: Credit Hours- 1
An introductory study on Spinning, Weaving, Dyeing, Printing, Finishing and Garments Processing

CE 1112 Engineering Drawing

Sessional: Credit Hours- 2
Contact Hours/week 0 +4
Introduction:
‘Instruments and their uses, Planning of drawing sheets, dimensioning, projection and its types, First and third angle- Projection of elementary machine parts, models of pictorial, orthographic drawings, Isometric projection of simple solids and its components. Pictorial projection in oblique and maxillary planes, Assembly drawing from orthographic projection & pictorial views, Sectional views.
Specifications for manufacture; Working drawings; plan and elevation of building: Drawing of gear tooth profile, cam profile, fasteners, key & springs. Free-hand drawing of different textile machinery parts, drawing of assemblies of textile machinery parts from given details: Computer Graphics

Book References:
1. Any book on Engineering Drawing

HUM 1117 English

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
B Sc in Textile Engineering
Part-1 Even semester

PHY 1211 Physics-2

Theory: Credit Hours - 3
Contact Hours/week 3 + 0

Book References:
- Outlines of physics by Dr.Giasuddin Ahmed
- Heat & Thermodynamics by Brijlal & N. Subrahmanyam
- Thermodynamics: An Engineering Application by Yunus A.Cengel.
- Engineering thermodynamics (3rd ed.) by Rogers,Mayhew.

PHY 1212 Physics-2 Sessional

Sessional: Credit Hours - 1
Contact Hours/week 0 +2
Heat:
- Co-efficient of linear expansion of a solid
- Specific heat of a solid and liquid by the method of mixture with radiation correction.
- Specific heat of liquid by the method of cooling
- Thermal conductivity of metals
- Determination of the boiling point of a liquid by platinum resistance thermometer.
Electricity:
- Resistance of Galvanometer by self deflection method.
- Determination of the end-correction of a meter bridge
- Specific resistance of a wire by meter bridge
- Determination of the resistance of a wire by P.O Box.
- Verification of ohm’s law using a tangent Galvanometer.
- Determination of the E.C E of copper.

Determination of the mechanical equivalent of heat by electrical calorimeter.

CHEM 1213 Chemistry-2

Theory: Credit Hours- 3
Contact Hours/week 3 + 0

Aliphatic Hydrocarbons

Alkenes: Classification, Structure & Conformation; Nomenclature, General methods of preparation; and important reactions.

Alkenes: Classification, Structure & Conformation; Nomenclature, General methods of preparation; and Important reactions.

Alkynes: Classification, Structure & Conformation; Nomenclature, General methods of preparation; and important reactions.

Aromatic Hydrocarbons

Introduction to Aromatic Compounds; Structure of Benzene, Stability of Benzene ring; Reactions of Benzene, Resonance structure of benzene, Orbital picture of Benzene: Aromatic Char Electrophonic Aromatic Substitution-mechanism, reactivity and orientation.

Hydroxyl Compound

Alcohols: Classification, Nomenclature, structure, Isomerism, general methods of preparation reactions of aliphatic and aromatic alcohols

Phenols: Classification, Structure, preparation and important reactions.

Carbon Compounds

Aliphatic baldheads and ketenes: Structure, nomenclature, general methods of preparation and important reactions

Aromatic baldheads and ketenes: Structure, nomenclature, general methods of preparation and important reactions

Carboxylic Acids

Carboxylic acids: Structure, nomenclature, general methods of preparation physical properties and important reactions, Derivatives of carboxylic acid:- chlorides, anhydrides, Esters and amides.

Amines

Aliphatic Amities: Classification, Structure, Nomenclature, isomerism, general methods of preparation and reactions, Aromatic Amines: Structure, preparation and reactions, A brief study of Diazonium salts and Azoic compounds

Carbohydrate

Classification, Nomenclature and stereo chemistry and inter conversion of carbohydrates.

Monosaccharide

D-Glucose and Fructose

D-Glucose: Open chain structure, cyclic structure, physical properties and reactions. Disaccharides: Structure of sucrose, reactions and uses. Poly saccharine: Starch and cellulose

Cellulose: Preparation, structure, derivatives and uses. Starch: Source, structure, Derivatives and uses.

Amino acids, Proteins and Enzymes

Classification nomenclature, synthesis and reaction

Isomerism

Structural isomerism, Chain isomerism, Positional isomerism, Functional group isomerism,
Mesmerism etc
Stereo- isomeric Geometrical isomerism and optical isomerism. Configuration and conformation:

Oregano-Metallic compounds
and structure

- Granger reagent Preparation, Important reactions and application in organic synthesis Organ-
 zinc compound: Preparation, Properties, Reactions and uses.
- Tetraethyl lead Preparation, reaction uses and its adverse effects on environment.

Color Dyes and Pigments
Theories of color and color conjugated system, Nomenclature, Classification, Raw materials for
synthesis of dyes

Book References:
1. Organic Chemistry by Morrison & Boyd
2. Organic Chemistry by Arun Bahl
3. Organic Chemistry by Finer (Vol. 1 & 2)

CHEM 1214 Chemistry-2 Sessional

Sessional: Credit Hours- 1
Identification of organic compounds:

- a) Alcohols: Methyl alcohol, Ethyl alcohol, isopropyl alcohol and tert-buryl alcohol.
- b) Carboxylic acids: Formic acid, Acetic acid, Oxalic acid, Benzoic acid, Salicylic acid etc.
- C) Carbonyl Compounds: Formaldehyde, Acetaldehyde, Acetone, Benzaldehyde etc.
- d) Miscellaneous: Phenols, Aniline, Nitro-benzene, Chloro-benzine, etc. Oxidation, Reduction
 titration -
 a) Standardization of Kino solution with standard oxalic acid or sodium oxalate.
 b) D Fe standard Kino solution.
 c) Standardization of sodium-thio-sulphate solution with standard Kino
 d) Determination of available chlorine in bleaching powder by zoometric method
 e) Determination of Na content of washing soda.
 f) Determination of strength of H
 g) Determination of total acid and alkali in soap.

**MATH 1215 Integral Calculus, Differential Equations, Vector Analyses and Mathematical
Methods**

Theory: Credit Hours- 4

Integral Calculus:
Method of substitutions; special type of Integration, reintegration of rational fractions;
Integration by parts, Integrals of special trigonometric functions, Reduction formulae for
trigonometric functions, Miscellaneous integral, Definite integrals, Improper integrals, Multiple
integrals.

Differential Equations
Variables, Homogeneous equation. Reducible to homogeneous form, Lie's Differential
Equations. Linear differential equations, Linear equations with constant Coefficients, Inverse
operations. f(D)V = f(D) a f(D)Y = Sinai or Conan, f(D)y ex., Method of undermined co-
efficient, Method of venation of parameters. Particulars Integrals; Linear Homogeneous equation
with variable coefficient, Equation of the first order but of higher degree, Equation solvable for y,
Equation solvable for x equation, System of linear different equations.

Vector Analyses
Scalar product or Dot product of two vectors, three vectors, four vectors, vector product or cross
product vectors, Solution of vector equations, Gradient, divergence, Curl, Application of vectors
in Geometry, Vector differentiations, Vector Integration.
Mathematical Methods:

Book References:
1. Integral Calculus by B. C. Das & B. N. Mukherjee
2. Integral Calculus by Abu Vusuf
3. Numerical Mathematical analysis by Jame B. Scarborough
6. Numerical Analysis by Kedarnath & Ram Math
7. Vector Analysis by Spiegel
8. Integral Calculus MA. Matin & B.B. Chakravarty
9. Differential Equations by S.L. Ross
10. Integral Calculus by M.L. Kharina
11. Mathematical Physics by Rajput.

TE 1211 Textile Raw Material – 1

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
Definition of textile fabric, Classification of fibers with examples.

Study of cellulose fibers:
Cotton: Cultivation and harvesting, Growth, Composition. Physical and chemical structure and properties, Geographical distribution, Ginning, Grading classification and End uses.

Best Fibers
Cultivation and harvesting of different types of best fibers with special reference to Jute; Growth, Composition, Physical and chemical structure and properties, Retting, Study of fiber ultimate, Sorting, Grading, classification and End uses.

Brief study of other types of cellulose fibers such as leaf and fruit fibers.

Study of Protein fibers:
Wool: Growth, composition, physical and chemical structure and properties, Geographical distribution of main wool producing countries, Shearing, classing sorting and End uses;

Silk: Production of raw silk-egg production, cocoon production, reeling and throwing, Composition, Physical and chemical structure and properties, Geographical distribution and End uses;

Book References:
2. Dyeing and Chemical Technology of Textile Fibres by E.R. Trotman
3. Textiles, Fibers, Dyes & Processes by Howard L. Needles
4. Textiles: Fibrils o Fabric by Corbman, Bernard P
5. Textile Fibers by Mathews (John Wiley & Sons Inc.)
6. Textile Raw Materials by Abu sina Md. Ruknul Quader

TE 1213 Polymer Science

Theory: Credit Hours- 2
Contact Hours/week 2 + 0

Introduction and history of polymer science

Definition of different terms: Polymer, monomer, bloomer, repeating unit, Degree of polymerization end group etc.
Classification of Polymers: Based on the origin, Chemical and geometrical structure. Chain Architecture, monomer or Chemical Microstructure, the side Chain Structure I Configuration of Polymer Chain/ Stereo regular Polymer

Criteria of fiber forming polymers

Different types of chain polymerization: Free radical polymerization, Ionic polymerization, Coordination polymerization.

Kinetics of Polymerization: Introduction, Free radical chain polymerization, Ionic Polymerization etc. Different types of step polymerization: Poly condensation, Poly addition, Ring-opening etc.

Technical of polymerization: Liquid, Gas and Solid phase.

Molecular Weight and Size
Number average molecular weight, Weight average molecular weight, Viscosity average molecular weight and their measurements, molecular weight distribution, Effect of molecular weight on mechanical properties.

Glass Transition Temperature: Definition, Melting temperature (Tm) Flow temperature (Tf) etc. Transition and associated properties, melting temperature, Factors influencing the Glass transition temperature, Importance of glass transition temperature.

Crystallinity in Polymers: Crystalline solid and their behavior, Degree of Crystallinity, Crystallisability, Polymer Crystallization, Structural regularity and crystallisability, Amorphous and their: effect on Tg and Tm

Preparation and properties of different polymers: Polyethylene, Poly Vinyl Chloride, Polyvinyl alcohol, Polystyrene, Polyester, Nylon, Poly isoprene, Polyurethane, Silicone polymers etc.

Polymer degradation: Types of degradation Thermal degradation, Photo degradation, Mechanical Degradation, Oxidative degradation etc.

Polymer Processing: Introduction, Compounding, Processing Techniques

Book References:
1. Polymer Science by Gowariker, VR. (Publisher: Wiley Eastern Limited)
2. Text Book of Polymer Science by Fred W. Billmeyer, Jr. (Publisher: Interdicienc Publishers, a Division of John Wiley and Sons)
3. Polymer Chemistry by Bruno Voilmert (Publisher: Springer-Verlag, New York)

CE 1211 Engineering materials and Practices

Theory: Credit Hours- 3

Definition of stress and strain, various types of stress and strain - tensile, compressive, shear, calculation of various stress, Mohr’s circle of stresses.

Hook’s law of elasticity, definition of modules of elasticity and rigidity, analyses of typical tensile strain curve for a ductile material showing yield points, breaking point, yield stress and ultimate stress, Poison’s ratio.

Springs, Types of spring, closely coiled spring, spring subjected to axial loads and axial twist, open coiled spring.

Columns and strut, buckling of column, Euler’s column theory, Euler’s crippling load for column,

Ranking’s crippling load for column, Eccentric loading on column.

Mechanical properties of iron and steel, strain, energy and resilience, breaking energy and toughness, repeated loads and fatigue, hysteresis, and endurance limit, time ‘effect, creep and relaxation of stresses, hardness and its methods of measuring, structure and properties of wood, Alloys of metals and their properties, Material in hostile environment (high temp.. sub-normal temp. and corrosion).

Book References:
1. Introduction to Physical Metallurgy by S. H. Avner
2. Physical Metallurgy for Engineers by D. S. Clark & W. R. Varney
3. Engineering Physical Metallurgy by V. Lakhtin
4. Introduction to Modern Steel Making by R. H. Twpkary
5. Introduction to Engineering Materials by B. K. Agrawal
6. Metallurgy for Engineers by E. C. Rollason
8. Mechanics of Materials 1 (ed) by E. J. Hearn

CE 1212 Engineering materials and Practices Sessional

Sessional: Credit Hours- 1 Contact Hours/week 0 +2
Identification and use of hand-tools and measuring instruments, reamers, laps and dies, bench, vice and carpentry tools, models making. Identification, use and practices on Lathe, Drill, Grinder, Shaper, Planner, Circular saw and milling machine.
Sheet metal work -Cutting of sheet material to make some useful objects. Metal joining processes — Soldering, Brazing, riveting, gas welding and electric are welding. Heat treatment of steel such as annealing, normalizing, quenching, tempering and surface hardening, Sand moulds, core molding, pattern for casting and sand casting.

B.Sc. in Textile Engineering
Part-2 Odd semester

TE 2111 Yarn Manufacturing -1

Theory: Credit Hours- 3 Contact Hours/week 3 + 0
Short Staple
Characteristics of considered by a spinner; Flow chart for the production of carded and combed yarns; Importance of mixing and blending:
Blow Room
Principle of Opening and Cleaning: Study or Blow Room Machines for Blending Opening. Cleaning and control of regularity or mass per unit length, Extraction and control of waste: Settings or waste. Blow-room lines for different purposes; Use of suitable sequence of machines: Production of scorcher laps; Advantages and disadvantages of chute feeding to cads, Safety; Prevention of fires, methods of extraction of metal objects; Main settlings, Speeds, Production calculation.
Carding
Principles and objects of carding: Detailed study of the revolving flat card; types and care of wire SU and Grinding, Doffing mechanism; Extraction end control of waste and dust, an coiling, Speeds. Production calculation. Settings. Cleaning efficiency. Control of nep and Fiber damage. variation in sl mass per unit length
Draw Frame
Principles of roller drafting; Drafting forces: Fiber control: Drafting wave and effect of short Fibers until hooked ends created in carding; Mechanical bull causing periodic variation; Minimum t variation Effects of doubling and drafting Study of draw frame, Crafting system. Stop mechanism. Can coiling, Roller selling. Production, Introduction and functions of auto travelers.
Long Staple
Flowcharts for production of yarns from bust fibers, Woolen and worsted and silk; Processing of Jute; Importance and methods of batching and batch selection; Emulsion preparation of application. Softening technique and machinery; Treatment of cuttings;
Carding
Principles and objects of Jute card; Detailed study of carding systems and machinery. Methods of spreading. Differences in treatment on breaker and finisher cards, pinning. Control of opening and waste, Cleaning efficiency, Settings, Speed; and productions.
Book References:
1. Textiles: Fiber to Fabric by Corbman, Bernard P
2. General Technology of Cotton Manufacturing (Mir Publisher) by P.T. Bukayer
5. A guide to Jute Technology by Sadruddin Ahmed
7. Manual of Cotton Spinning by
8. Jute Spinning by Hafijuddin Ahmed

TE 2112 Yarn Manufacturing -1 Sessional

Sessional: Credit Hours- 1

- **Contact Hours/week 0 +2**
- **Short Staple**
 Detailed Sessional study of Mixing. Blow room Carding and Draw frames of Colton Spinning:
- **Long Staple**
 Details Sessional study of batching, softener, Spreader. Breaker card and finisher card of jute spinning.

TE 2113 Fabric Manufacturing -1

Theory: Credit Hours- 3

- **Contact Hours/week 3 + 0**
 Sizing: Introduction to sizing hauls of a size maxi pro and their Functions; Chemistry of sizing and technological changes due to sizing, Typical recipes. Choice of size ingredients. Size cooking, short description of different techniques of sizing, Methods of drying. Dressing of jute yarn, Warp sizing and weaving efficiency. Mechanism of size takes up. Defects in sizing and their remedies, Calculations related o winding, warping and sizing
 Shedding: Tappet shedding, Construction of shedding Tappet.
 Debby Shedding: Scope and classification, negative, positive and cross-border, Peg-plan, Timing and dwell of dobbay.
 Picking: Classification, over picking and under picking mechanisms, Construction of picking tappet, picking faults.
 Boating: Principle of crank and crank arm beating, Effect of crank arm and crank length, Slay eccentricity and its effects, Forces involved in beating action.
 Take-up and let-off mechanisms. Calculation of take-up constant, picks/cm and rate of let off. Necessary calculations.

Book References:
1. Textiles: Fiber to Fabric by Corbman, Bernard P
2. General Technology of Cotton Manufacturing (Mir Publisher) by P.T. Bukayer
3. Weaving Calculations by R. Sen Gupta (Pub S.D. Taraporevala Sons & Co. Private Ltd.)
TE 2114 Fabric Manufacturing -1 Sessional

Sessional: Credit Hours- 1

Weaving
Sessional study of the process and machinery involved in the warping, sizing and weaving. Visits to plants, Operation of machinery.

Knitting
Sessional study of the machinery involved, Understanding of the principles of loop formation in different circular, flat and warp knitting machine.

TE 2115 Textile Raw Materials-2

Theory: Credit Hours- 2

Introduction and historical development of man-made fibers, Definition and classification of man-made fibers, Significance of man-made fibers, Advantages and disadvantages of man-made fibers. Principles of different spinning systems, Different fiber structures and their effects on fiber properties. Yarn texturing. Technologies of formation of regenerated fibers. Their properties and uses: Different types of viscose rayon and acetate rayon’s, derivatives of cellulose different types of regenerated protein fibers. Technologies of formation of purely synthetic fibers, their properties and uses: Polyamides, Polymers, Polyacrylics, Polypropylene, PVA, PVC and Electrometric fibers. Formation of carbon fibers, Bi/Multi-component fibers, glass fibers and metallic fibers, their properties. their properties and uses. Present trends of chemical fibers production and their economic and social aspects.

Book References:
2. Dyeing and Chemical Technology of Textile Fibres by ER. Trotman
3. Textile Fibers, D Ves & Processes by Howard L. Needle
4. Textiles: Fiber to Fabric by Corbman, Bernard P
5. Textile Fibers by Mathews (John Wieley & Sons Inc.)
7. Man-Made Fibers by R.W. Moncrief

TE 2117 Textile Testing and Quality Control-1

Theory: Credit Hours- 2

Introduction to Textile Testing and Quality Control, Importance of Textile Testing and Quality Control, Sampling methods for fiber.

Moisture: Moisture content and moisture regain standard moisture regain of different fibers, Relative humidity measurement of relative humidity, standard conditions for testing importance of moisture regain, methods of measurement of moisture in textiles. Fiber Testing: Length, staple length, effective length, span length, fiber length dispersion, Short fiber percentage, methods of test, Fineness and maturity of cotton, Importance in processing, Relationship between fineness and maturity, Methods of measurement and expressions of results, Maturity ratio, measurement of foreign matters in fiber sample. Tensile strength (Tenacity)-Single fiber and fiber bundle test, comparison of different methods and between single fiber and bundle test. Yarn Testing: Measurement of linear density of lap, sliver, roving and yarn, counting systems, different methods of measurement of yarn count, Twist in yarn, Measurement of twist.

Book References:
1. Principles of Textile Testing by J.E. Booth (Publisher: Newnes Butterworths)
2. Textile Testing by Skinkle
3. Technology of Textile Testing and Quality Control by Elliot B. Grover D.S. Hamby
TE 2118 Textile Testing & Quality Control-1 Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2
Determination of Moisture regain and moisture content of cotton, Fiber length and length characteristics, Fiber fineness, Maturity ratio of cotton fiber, Trash content in cotton, Fiber strength by Presley,. Strength tester, Fiber properties measurement by High Volume Instrument (HVI) and Advanced Fiber Information System (AFIS), Hank of sliver and roving, count of yarn by wrap reel and balance in. different counting systems. Count of yam by (i) Knowles balance (iii) Inadrant balance, Twist of single and double yam.

STAT 2111 Statistics

Theory: Credit Hours- 3
Contact Hours/week 3 + 0
Introduction to descriptive statistics: Collection of data: Organizing and presentation of data: Importance of Statistical data; Population and sample.
Frequency Distribution: Grouped frequency, distribution and their presentation in the form of frequency polygon and histogram
Measurement of Central Tendency: Mean, Arithmetic mean, Geometric mean, Harmonic mean, Median, Mode, definition, computation, advantages, disadvantage and uses. Measurement of Dispersion: Absolute measurement, Range, Mean deviation, Quartile deviation, Standard deviation, Relative measurement, Co-efficient co variation. Definition, computation and uses.
Moment, Skewness and Kurtosis: Definition, computation and uses
Probability: Simple idea of probability, Different definitions related to probability, Addition law of probability, Multiplicative law of probability, Dependent and independent probabilities, Bayes’ Theorem, Discreet and continuous probability distribution, Concept about probability distribution, Binomial, poison distribution and Normal distribution and their Sessional applications, ideas on multiple co relation Concept of sampling, Types of Sampling distribution and their application in statistics.
Correlation and Regression: Basic idea about correlation, Measure of correlation, Pearson correlation coefficient, and Spearman's rank correlation coefficient, Computation correlation coefficient and rank correlation coefficient
Concept on simple regression: Scatter diagram. Distinction between regression and correlation. importance of regression analyses in statistics, Concept of dependent and independent variables Computation of regression parameters, Sessional exercises on the regression line, Concept of multiple regression. Regression coefficients and their interpretations, R-square and its interpretation.
Test of Significance: Basic idea on test of significance, Different test statistics, Student’s I. Fisher’s Chi- square, Paired t- test and variance ratio, Concept on test of hypothesis, Types of hypothesis. Import of test of hypothesis in statistics, Types one and two errors, confidence interval, h P value, Design of experiments, one way and two way of analyses of variance, Computation of arc: variance table.
Sampling fundamentals: Drawing random sampling, Sampling frame, Steps of designing a sample survey, Sampling frame, Steps for designing a sample survey, Sampling and non sampling errors, Probability sampling and non probability sampling, Types of sampling and sample size determination.
Statistical quality control:
Introduction, The classical time series model, Description of trend, Measurement of seasonal variations, Concept on Quality of control process and product control, Control chart and control limits, Computation of quality control limits, CL, UCL, LCL.

Book References:
1. An Introduction to statistics and probably by M.N.Islam .
2. Theory and problems of statistics by M.R.Spiegel
3. Methods of statistics by Ahmed, Bhuiya, Rezard l’lossain
4. Introductory statistics wiley and sons, NY by Hool, P.C
5. An Introductory statistics 3rd Ed. witey and sans, NY; by wonnacot, T.H. and Wonnacot R J
6. Probability McGrow Hill, NY; by lipschtitz.T

ME 2111 Elements of Mechanical Engineering and Machine Design

Theory: Credit Hours- 2

Thermodynamics and Heat Transfer
Fundamental Concepts and definitions. Revision of gas laws properties of perfect gas and steam, laws, of thermodynamics; homodynes, Mechanical process and cycles, Vapor power cycles Rankin, Reheat.

Different modes of heat transfer- conduction, convention and radiation. One dimensional steady state conduction of heat in solid plane wall. Radiation heat transfer, the law of black-body radiation.

Hydraulics -Properties of fluids, pressure head of a liquid, pressure gauges, flow of black-body radiation. equation, General energy equation for steady flow. Laminar flow and turbulent flow, head loss due to friction in a pipe, flow through circular orifices.

Compressed air -General discussion, textile applications and safety.

Pumps -Characteristics and application of reciprocating and centrifugal pumps.

Boilers, Steam engine, Diesel and Petrol engine, Gas turbine.

Friction-Limiting friction and co-efficient of friction, screw friction efficiency of screw jack, friction in journal bearing, friction clutches, rolling resistance.

Mechanism: Crank connecting rod mechanism, Quick return mechanism, links, Kilo meters pains Turn of motion and power-by belt, ropes, chains and gears: gear trans. Conversion of motion-Shedding, tappets and cams, Shearing force and moment, impact of forces, momentum, torque, torsion, moment of forces and its application in textile machines. Method finding radius of gyration of revolving or oscillating bodies.

Machine Design: Tolerances and allowances, variable loads and stress concentration. Design of screw joints, riveted joints; Spring Columns; Keys and couplings; Journal, ball and roller bearings, pressure vessels.

Book References:
1. Heat Transfer by Kreith,
2. Heat Transfer by Holman
3. Heat Transfer by Gebhat
5. Mechanics of Machine (2nd ed. SI metric) by Stephen & Hanna
6. Mechanics of Materials 1 by E. J. Hearn
7. Theory of Machine 1 by E. J K. Gupta
8. Fluid Mechanics by Shames
9. Fluid Mechanics by Fox & Medonald
10. Fluid Mechanics (1st SI metric ed.) by Streeter, Wylie

ME 2112 Elements of Mechanical Engineering and Machine Design Sessional

Sessional: Credit Hours- 1

Study and experiments based on TXE 307. Conduction and Convection heat transfer, Bernoulli’s experiment, flow through pipes and circular orifice Centrifugal pump boilers I C S
B Sc in Textile Engineering
Part-2 Even semester

TE 2211 Wet Processing - 1

Theory: Credit Hours- 3
Contact Hours/week 3 + 0

Water Materials and chemicals for wet processing: Water. Water importance in wet processing (hydrogen bonding, Cluster off evaporation, Dissolving ability), Water treatment (Estimation and Removal of Hardness), ‘Soda, detergent etc.

General concepts of Seeps: Classification of detergents. Detergency (Mono’ molecular layer, Middle formation, Surface and intern tension, wetting an dispersing. Different types of surface active agents (Synthesis, Effects, Degradability): Chemistry, properties and uses various Acids, Alkalis, salts, Oxidizing Agents and Reducing Agents in Textile Wet Processing.

Pretreatment: Flow-chart of wet processing. Chemistry of various impurities in fibers and their removals; Singeing, Desizing, Scouring of cotton, Jute, Wool and silk fibers, Methods of bleaching of cotton, Jute, wool and silk fibers, Mercerization of cotton.

Technology of Dyeing: Elementary concepts of colour and constitution, Chromophore, Chromogen, Auxochrome, Resonance theory.

Colour measuring instruments.

History of dyeing: Classification of dyes according to their chemical constitute and application.

Structure and application of direct, Acid, Basic and Vat dyes on different fibers:

Book References:
1. ‘Dyeing and Chemical Technology of Textile Fibres by E.R. Trotman
2. Modern Techniques of Textile Dyeing, Blé & Finishing by S.M. Arora
3. Technology of Bleaching & Mercerizing by Prof. V. A. Shenai
4. General Technology of Cotton Manufacturing (Mm Publisher) by P.T. Bukayer
5. Textile chemistry—i & 2 by Abu sina Md.Ruknui Quader

TE 2212 Wet Processing - 1 Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 + 2

Study on Wet Processing Machineries.
Preparation for dyeing, Desizing, Scouring and bleaching of cotton, Jute, Wool and silk fibers, Sessional application of direct, Acid, Basic and Vat dyes for Dyeing of Cotton, Jute, Wool and Silk fibers.

N.B. Per year 3 to 4 Running Textile Mill visit necessary.

TE 2213 Garments Manufacturing - 1

Theory: Credit Hours- 3
Contact Hours/week 3 + 0

Historical Development of Garments industry in Bangladesh and other countries of the world. Garments terms and definitions’, Garments manufacturing sequence, General discussion on pattern making, Sample garments making, Components of shirt, trouser and their types, Standard body, measurement ‘for Gents, Standard body measurement for ladies, Principle of pattern making for shut and trousers Pattern grading.

Marker Making: Definition, marker efficiency, objectives, constraints, method, drawing, duplicating and wastage in marker making.

Book References:
1. Apparel Manufacturing by Glock Ruth
2. Garments and Technology by M.A. Kash
TE 2214 Garments Manufacturing -1 Sessional

Sessional: Credit Hours- 1 Contact Hours/week 0 +2
Sewing machine handling and adjustment, General sewing practices, Marker and Marker Making, Marker copying, Pattern making for shirt and Trousers Pattern grading, Fabric cutting, industrial visit.

N B Per year 3 to 4 Running Textile Mill visit necessary

TE 2115 Fabric Structure and Design

Theory: Credit Hours- 3 Contact Hours/week 3 + 0
Plain Weave Fabrics — Derivatives of plain weave and their characteristic. Ornamentation of plain weave fabrics by varying set, yarn linear density, crimp, twist and material.
Twill weaves — Definition of the terms balanced warp-faced and weft-faced Mill weaves. Developed twill weaves, i.e. waved, herring diamond and Relative firmness of twill weave, Large twills influence of the twist of the yarns. Angle of inclination of twill weaves Satin and sateen weaves, Drafts, denting and pegging plans.
Fancy designs of fabrics — Characteristic, appearance and texture of simple fancy weaves (viz, mock leno Including distorted thread effects), huckaback honeycomb, basic crepe weaves and Bedford cord structures.
Stripe and check effects using basic and simple fancy weaves, Colour in combination with weave effects, i.e. pinstripe, crowfoot, dog’s tooth, shepherds check.
Designs of fabrics figured with extra weft and extra warp and weft.
Designing of double width tubular multiply and stitched double cloth designing of double equal plain fabrics figured by inter change

Knitted Fabric Structure
Structure of I x I rib and I x 1 purl weft knitted fabrics and their representation on design paper.
Comparison of the properties of plain, I x I purl weft knitted fabrics.
Structures of simple, tuck and miss stitches and their representation using loop diagrams.
Representation using conventional notation I x 1 straight lock, 1 x 1 cross lock, hail-cardigan, full-cardigan, 1 x 1 weft lock knit and 2 x 1 weft lock knit structures.

Book References:
2 Laboratory Practice in Knitting Technology by L Kudriavan (Publisher Mir Publishers Moscow)
3. Watsons Textile Design and Colour by Z. Grosicki

TE 2216 Fabric Structure and Design Sessional

Sessional: Credit Hours- 1 Contact Hours/week 0 +2
General procedure for the analyses of woven and knitted fabric. Determination of specifications for the reproduction of fabric samples of all types Sessional setting of sample and compound structures Calculations relevant to woven and knitted fabric structure

NB. Per year 3 to 4 Running Textile Mill visit necessary.
TE 2217 Textile Physics

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
Physical structure of fibers
Crystallinity and orientation, Basic concepts of methods for investigating fiber structure, e.g. X-ray diffraction, optical and electron microscopy infra-red absorption, relations between fiber properties and structure of fiber.

Detailed study of fiber properties
Mechanical properties- Tensile strength (tenacity), flexural and torsional properties, stress/strain relations under various conditions. Modules of elasticity, plasticity, creep and relaxation.

Effects of moisture- Effect of water on fiber e.g. swelling.

Frictional properties- Importance in drafting experimental methods of measurement. Effect of lubricant and dyes. Relationship of frictional properties of knitting, stitching and sewing.

Optional properties- Reflection, refraction, scattering, polarization, birefringence.

Thermal properties- Absorption and emission of radiation, Energy changes associated with changes of state including transition temperature of fibers. Moisture content and heat of wetting.

Book References:
 (Publisher: Butterworth & Co. Ltd. and Textile Institute)
2. Textile Fiber and their uses by Hess

EEE 2211 Elements of Electrical Engineering and Electronics

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
Electrical Engineering

D.C. Current - D.C. fundamentals, Generators and their characteristics motors and their characteristics. Speed control process.

Sub-station - Its purpose, Substation equipments (HT.LI Switch gear etc.), Distribution board and sub-distribution board.

System network- Typical distribution circuits, cables and wiring systems and their selection.

System protection- Types of faults, (transformer and motor) principles of protection, Protective devices — circuit breaker, switches, starter.

Electrical hazards- Protection against shock and fire, earthing and its importance, procedure to be adopted when a person is in contact with a live contact.

Book References:
1. Introductory Circuit Analysis by Boylestad
2. Introduction to Electrical Engineering by R. P. Ward
3. A Text Book of Electrical Technology (Vol 1 & 2) by B. L. Theraja
4. DC & AC machinery by Rosenblatt
5. Electrical Machine by Bhattacharje
6. Alternating Current Machine by T. C. Lloyd

EEE 2212 Elements of Electrical Engineering and Electronics Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2
Study on - D.C. circuits, AC. circuits, D.C. motors, Induction motor, A.C. and D.C. generators, single phase transformer, 3-Phase transformer, Star-delta starter, Full-wave and Full-wave rector, Transistor amplifier circuit, Transducer and sensor application circuits.

Application of IC’s in every day and industrial use. House wiring and layout o a factory (Electrical).
CSE 2211 Computer Science

Sessional: Credit Hours- 2
Contact Hours/week 0 +4

Basic Programming Technique
Writing Algorithm and Drawing Flowchart, Use of different commands, C/C++/JAVA (variables, operators and formulas, input-output statements, branching and looping, library functions. defining functions and subroutines, arrays and subscripted variables, sequential and random data files, use of colour and sound. microcomputer graphics).

Introduction to different types of microprocessor
Microprocessor architecture, Instruction set, I/C operations, Interrupt structure, Interfacing and interfacing ICs, Microprocessor based system design

Introduction to robotics: Definitions, Industrial robots, Robot structure and robot configuration. Robot drives and control systems, Robot sensors, Robot Applications

Introduction to control systems and their representation
Different types of control systems, Hydraulic and pneumatic control systems. Elements of electro mechanical controls, Introduction to digital computer control

Book References:
1. Mechatronics by D. A. Bradley
2. Mechatronics by W. Bolton
3. Modern Control System (8th Cd.) by Don & Bishop
4. Automatic Control Engineering by Francis H. Raven
5. Feedback & Control System by Di Stefano
6. Engineering Instrumentation & Control IV by Adams
7. Measurements & Instrumentation by Adams
8. Pneumatics & Hydraulics by Stewart

B.Sc. in Textile Engineering
Part-3 Odd semester

TE 3111 Yarn Manufacturing -2

Theory: Credit Hours- 4
Contact Hours/week 4 + 0

Short Staple

Ring frame -Function of ring spinning process, description of main working parts, Drafting systems, types of spindle, ring and travelers. Yarn tensions and forces acting on the traveler. Winding, building mechanism, Settings, Speeds and Production. End breaks.
Study of doubling and Twisting machines different systems of doubling Reeling building Brief outline of modern spinning systems.

Long Staple
Objects and functions of jute drawing Detailed study of jute drawing frames, drafting system Suitable drafts and roller settings.

Book References:
1. Textiles: Fiber to Fabric by Corbman, Bernard P
2. General Technology of Cotton Manufacturing by P.T. Bukayer (Publisher: Mir Publisher)
3. The Technology of Combing & Drawing Vol-3 by W. Klein
4. A Sessional Guide to Ring Spinning V-4 by W. Klein
6. A guide to Jute Technology by Sadruddin Ahmed

TE 3112 Yarn Manufacturing -2 Sessional

Sessional: Credit Hours- 2

Short Staple: Sessional study of Comber, Speed frame, Ring frame, Doubling and Reeling machine of cotton spinning

Long Staple: Sessional study of Drawing frame, Spinning frames of jute spinning.

TE 3113 Fabric Manufacturing -2

Theory: Credit Hours- 4

Weaving

Study of board (C.B.C.) loom. Time studies in weaving and calculation of weaver’s load, Cloth costing, Causes of warp and well breakage in weaving, Cloth faults and their remedies, Factors controlling loom efficiency and means of increasing loom efficiency. Relevant calculations.

Knitting: Introduction and historical background of Knitting Technology, Hosiery yarns. General terms and principles of knitting Technology, Knitting action of latch, bearded and compound needle, Basic mechanical principles of Knitting Technology, Elements of knitted loop structure Warping. Plain circular latch needle machine. Description, knitting action, Cam system, Sinker timing.

Circular Rib machine- Description, knitting action, needle timing etc.

Circular Interlock machine- Description, knitting action, interlock cam system, etc.

Purl knitting machine- Description., purl needle transfer action, Use of dividing cams, use of spring loaded cams, characteristic features of the knitted fabric. Hosiery machine drive, control mechanism and sequences. **Hosiery machines** - Mechanism for welts, heels and loc production, Hosiery stitch control mechanism.

Study on weft knitting machines- Fabric machine, Garment length machine. Stitches produced by varying the timing of the needles, loop intermeshing.

Straight bar frame-Development. Fully fashioned article, knitting action of straight bar frame, Rib to plain machines.

Double cylinder hosiery machine, Closed toe hosiery machine, Knitting Argyle designs on circular half hose machine, Fish net, stockings and panty house production.

Basic warp knitting principles- Terminology mechanism and Classes of warp knitting machinery Tricot and Ratchet machines, knitting cycle of bearded needle Tricot and single needle bar Ratchet machines. Compound needle warp knitting machine. Crochet machine, warping.

Book References:
1. Textiles: Fiber to Fabric by Corbman, Bernard P
2. Weaving Conservation of Yarn by Lord, P R & Mohamed, M.H
3. Weaving Calculations by R. Sen Gupta (Publisher: B.D. Taraporevala Sons & Co. Private Ltd)
4. General Technology of Cotton Manufacturing by PT Bukayer (Publisher Mir Publisher)
5. Laboratory Practice in Knitting Technology by L. Kuidriavan (Publisher: Mir Publishers, Moscow)
6. The Mechanism of Weaving by Thomas W. Fox
7. Fabric manufacturing -2 by Abu sina Md. Ruknul Quader

TE 3114 Fabric Manufacturing -2 Sessional

Weaving
Sessional study of the relevant machinery. Dismantling and reassembling of various parts. Operation of machinery. Visit to manufacturing plants etc.

Knitting
Sessional study of different mechanisms - feeding, drawing-off, winding and receiving, driving and stopping mechanisms. Operational technique of knitting machinery. Detection of fabric specification from given samples.

TE 3117 Textile Testing and Quality Control -2

Yarn Testing
Sampling methods, irregularity; measurement of sliver, roving and yarn by cutting and weighing methods, thickness under compression, capacitance and other methods; length variance curves, Use of spectrogram for analyses of periodic, random and drafting wave variation. Measurement of imperfections. Comparison of results with Uster statistics. Measurement of yarn hairiness
Measurement of tensile strength of yarn; single thread, skein or lea strength. and ballistic test: comparison of results, CRT, CRE, and CRL machines and methods of loading.

Methods of measurement for tensile. tearing. ballistic and bursting tests. Relationship of Fiber yarn and fabric strength.
Measurement of air, water permeability/retention, water pressure; crease recovery. Serviceability, wear and abrasion tests, pilling of fabrics. Flame retardant resistance tests.
Measurement of fastness to light, washing and rubbing Estimation of damage to materials caused by physical and chemical treatments viz, Singeing securing, bleaching. Determination of size and filling.

Carpet testing — Carpet thickness, compression and durability, Identification of fibers.

Book References:
1. Principles of Textile Testing by J.E. Booth (Publisher: Newnes Butterworms)
2. Textile Testing by Skinkle
3. Repair & Adjustment of textile Machines
TE 3118 Textile Testing & Quality Control-2 Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2

Determination of (i) Single yarn strength by single strength tester (ii) Lea strength and C.S P. of yarn (iii) Irregularity of sliver, roving and yam (iv) Imperfections Analyses of spectrogram.

HUM 3111 Industrial Psychology and Management

Theory: Credit Hours- 4
Contact Hours/week 4 + 0

Industrial Psychology: Principles of human behaviors, Motivation of behavior and mechanism of adjustment of conflict, analysis of human and any entire behaviors.

Management and Organization
Definition, Function and role of management, Nature and scope of business, Direction and Communication, Controlling-budgetary control; Organization-structure, Type of structure, Work measurement and Wage plan operational research, Span of Supervision, Motivation, Leadership, Nature of Behavior, Personality, Psychology of labour/management reactions from different types of companies.

Personnel Management

Production Economics
Basic concepts in economics - utilities of goods wealth value price and want Theory of utility of supply and demand. Elasticity of supply and demand. Problems of allocation and investment study capital.

Production - factors of production-division of labour, location of industries, specialization. The economics of small scale and large scale production. Producers curves and production function.

Investment Decisions

Book References:
2. Management by Ricky W. Griffin S
3. Management by Harold Koontz & Heinz Weihrich
4. Management by Kathryn M. Bartol & David C. Martin
5. Management by W. Rue & Lloyd L. Byars
8. Financial Management by I. M. Pandey
10. Labor & Industrial Laws of Bangladesh (1 ed.) by Chowdhury
11. Basic Labor Laws of Bangladesh by Iqbal Ahmed
12. Bangladesh Labor & Industrial Law by A. A. Khan
B Sc in Textile Engineering
Part-3 Even semester

TE 3211 Wet Processing -2

Theory: Credit Hours- 4
Contact Hours/week 4 + 0
Technology of Dyeing - Structure and application of Sulphur, Azoic, Reactive and Disperse dyestuffs on different fibers, Stripping.

Dyeing machineries: For different types of dyeing processes loose Fibers, Yarn, Packages. (Fabrics) Continuous, Semi-continuous and discontinuous process. Technology of Printing: Flow chart of Printing, Thickener and types of Thickeners, Methods and styles of Printing; Machineries used in printing: Printing processes for different fibers with Direct, Acid, Basic and Vat dyes.

Printing process for different fibers with reactive, Azoic and Disperse dyestuff. Assistants used in printing operations and their functions; Structure of Pigments, Pigment printing, Computer aided print designs, Garment printing, Novelty printing effects, economics of printing processes. Technology of Finishing — Definition and classification of finishing; Physical and Mechanical Finishing of Cotton, Jute, Wool and fabrics; Shearing and Cropping, different types of calendaring, measuring and cutting, making up of different jute goods. Hoop length and dead weight measurement calculations, raising beetling, breaking, folding sanforsing; chemical finishing; mercerization and pre mercerization, resin finishing, water repellency, flame retardancy.

Book References:
1. Dyeing and Chemical Technology of Textile Fibres by E.R. Trotman
2. An Introduction to Textile Finishing by J.T. Marsh
3. Modern Techniques of Textile Dyeing, Bleaching & Finishing by SM. Arora
4. Chemistry of Dyes & Principles of Dyeing by V.A Shenai
5. An Introduction to Textile Printing by Butterworth
6. Textile Chemistry-2 & 3 by Abu sina Md. Ruknul Quader
7. Textile Printing by L.W.C Miles
8. An Introduction to Textile Printing by W. Clark

TE 3212 Wet Processing -2 Sessional

Sessional: Credit Hours- 2
Contact Hours/week 0 +4
Dyeing of various fibers with Sulphur, Azoic, reactive and Disperse dyestuffs. Printing of different fabrics with Direct, Basic, Acid, Vat, Sulphur, Azoic, Reactive and Disperse dyestuff. Pigment printing, Production of water repellent and flame retardant effects on different fabrics.

TE 3213 Garments Manufacturing -2

Theory: Credit Hours- 4
Contact Hours/week 4 + 0
Sewing: Seam properties, types and usages; Stitch types, properties and usages; Principle of lock stitch and chain stitch formation; Sewing machine-feed mechanism, needles, sewing thread, Sewing problem and remedies, Sewing machines, Work aids in sewing, simple automatic machines.
Alternative methods of joining fabrics - Welding, adhesives, Fusing, Molding and their comparison.

Trimmings - Discussion on label and motifs, Chain, Buttons, lining, Hood and loop fastening, shoulder pad, lace braid and elastic, performance of trimmings.

Pressing and finishing - Objects, types, methods and International care labeling codes.

Folding and Packing - Types, methods, equipments, symbol and markings. Discussion on garments washing, dyeing and drying machines.

Garments washing - Concept of washing, requirements of washing, different, types of washes Caustic wash, bleach wash, pigment wash, Enzyme wash, stone wash, Acid wash, Super white wash.

Garments Dyeing - Concept of swatch making and garments dyeing, Garments dyeing with reactive and other dyes, Problems associated with garments dyeing.

Book References:
1. Sewing for the Apparel Industry by Shaeffer, Claire
2. Garments and Technology by M.A. Kashem.

TE 3214 Garments Manufacturing -2 Sessional

Sessional: Credit Hours- 2 Contact Hours/week 0 +4
Production of different types of stitches, Production of different types of seams, pattern making for trouser, Pattern grading, Manufacturing problems and their correction, Fusing of garments parts, Test of fuse quality, Industrial visits.

TE 3217 Textile Physics-2

Theory: Credit Hours- 3 Contact Hours/week 3 + 0
Electrical properties — Electronic properties of solids, conductors and insulators, capacitance, dielectric constant, effect of moisture. Measurement of dielectric constants of fibers, yarns and fabrics.
Static electricity formation-Theories of static electrification. measurement of static charge. explanation of the phenomenon of static electrification in textile, its effect and remedies in textile processes.
Engineering approach to fiber structure, Mechanics of simple yarn structure, effects of fiber properties and yarn twist on tensitional and flexible rigidity. Effect of fiber length, fineness, strength and moisture on yarn strength.
Yarn geometry, effect of yarn strength (obliquity effect) luster, yarn diameter and handle Fiber migration, theory and causes of migration of fibers to surface or core of yarn Geometry of plain woven fabrics. calculation knowing crimp ratio and thread spacing. Geometry of jumped conditions, crimp interchange, effect of yarn flattening, deformation or fabric. Application of cloth geometry, tensile testing, geometrical change during extension of Fabrics. Fabric buckling, shear and drape, Geometry of plain knitted structure. Engineering design of fabric to meet specific mechanical properties. Prediction of tensile properties of fabrics Book References:
1. Physical Properties of Textile Fibers by WE. Morton & J.W.S Hearle (Publisher: Outer worth & Co. Ltd. and Textile Institute)
2. Textile Fiber and their uses by Hess

HUM 3211 Sociology

Theory: Credit Hours- 3 Contact Hours/week 3 + 0
Scope of sociology: Micro and Macro sociology. Some fundamental concepts. Society from savagery to civilization
Social evolution and techniques of production: Social structure of Bangladesh.
Oriental and occidental societies: Feudalism.
Industrial revolution: the growth of capitalism, Features, Social consequences. Social fascism, Social Pathology: Crime, Juvenile delinquency, Slum

Urban ecology: city, Pre industrial and industrial, growth and nature of cities in Bangladesh. 1 sociology: Features of Village community in Bangladesh. Urban-rural contrast Social structure of the tribal people of Bangladesh.

The concept of work: Work and art, Nature of industrial work, Work ideology; Work values. Role of work in Man’s life: Work and mental health. Work attitudes, Work involvement. The motivation to work, Work satisfaction, Commitment to industrial work, Development and commitment of the industrial labor force in Bangladesh.

The worker and the factory: The factory system and its characteristics, The formal relations of production in the factory system.

The industrial Bureaucracy: The executives in the industrial bureaucracy.

The role of worker: Industrial production and the worker’s role, Social relations at work motivation.

Book References:
1. Sociology: A guide to Problems and Literature by Blackie and Son (India) Lid; Bottomore, TB, 175.
4. Environment and Development in Bangladesh by Rahman, Atiqr del,
6. World Commission on Environment. Our Common Future
7. Survey Methods in Social Investigation, the English, Book Society and Heinemann

TE 3215 Application of Computer in Textile

Theory: Credit Hours- 3
Contact Hours/week 3 + 0
Use of computer in Textile Manufacture (Machine/process control dye recipe formulation quality control, colour matching, mixing ratio formulation etc.), General programming principles used in developing business and Textile applications of computers (Payroll, stock control, whole retailing etc.). Series of structure on c-language.

Principles - System analyses, system design, documentation, and planning.

Applications - Critical path analyses linear programming accounting forecasting etc use of available textile related software.

TE 3216 Application of Computer in Textile Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2
Sessional application and practice of the above topics

B Sc in Textile Engineering

Part-4 Odd semester

TE 4111 Advanced Wet Processing (Optional)

Theory: Credit Hours- 4
Contact Hours/week 4 + 0
Pretreatment
Special scouring processes (solvent scouring and Vapor bi scouring); Estimation of scouring, Bleaching and mercerizing effects; Estimation of available chlorine in bleaching powder, Faults arid damages in bleaching.
Dyeing

Printing
Special printing methods (Transfer Printing, Jet printing, Flock printing, Burn-out printing). Faults in printing and their remedies.
Special types of thickeners (Synthetic Polymers, Emulsion thickeners): methods of screen and roller preparation; detailed study on screen printing technology.

Finishing
Removal of excess water and various drying systems in wet processing. Low-wet pick-up finishing and its Importance, application of optical brightening agents. Lectures on recently published research and developments in wet processing.
Softening agents (different types, applications, special finishing treatments (rot-proofing, mildew proofing, insect and bactericidal finishes, soil lease finishes).

Book References:
1. Dyeing and Chemical Technology of Textile Fibers by ER. Trotman
2. An Introduction to Textile Finishing by J.T. Marsh
4. Chemistry of Dyes & Principles of Dyeing by V.A. Shenai
5. An Introduction to Textile Printing by Butterworth
6. Textile Chemistry -1, 2 & 3 by Abu sina Md. Ruknul Quader
7. Technology of Printing by Prof. V.A. Shenai

TE 4112 Advanced Wet processing (Optional) Sessional

Sessional: Credit Hours- 2 Contact Hours/week 0 +4
Determination of hardness of water, Removal of hardness by different methods. Dyeing of different fibers with mordent dyes and pigments, Preparation of screen and printing of different fabrics by flat bed and rotary printing machines. Production of crease resistant cotton fabrics with different types of cross-linking agents.

TE 4111 Advanced Garments Manufacturing (Optional)

Theory: Credit Hours- 4 Contact Hours/week 4 + 0
Garments inspection and quality control — Raw material and finished garments inspection. In-process inspection, Final inspection, Product quality audit, Comparability test.
Tools of planning - Work measurements, time study motion study and method study.
Material handling and transportation system of garments components advance study on scheduling in cutting room.

Material Management In the Clothing Production - Principle of purchasing, Marker utilization variation Fabric loss outside marker F utilization variation control of material wastage Manufacturing resource planning.

Product engineering, production engineering, Cost control, Total quality control, Quality from design to dispatch, Production and people, Training

Discussion category 4d quota, Merchandizing in the garment factory.

Detailed study of garments design, Lecture on latest trend in garments manufacturing. Lecture on recently published research and development works.

Book References:
1. Garments and Technology by M.A. Kashem
2. Garments Washing

TE 4112 Advanced Garments Manufacturing (Optional) Sessional

Sessional: Credit Hours- 2
Contact Hours/week 0 +4

Swatch making and reproduction of swatch, Different types of garments washing, Different types or garments dyeing, Seam strength analyses, Fabric sew ability analyses. Processing Man-made staple fiber and their blends. Detailed study of Rotor and other modern short and long staple spinning machines.

TE 4111 Advanced Fabric Manufacturing (Optional)

Theory: Credit Hours- 4
Contact Hours/week 4 + 0

Weaving

Knitting

Multiple guide bar warp knitting machines and their product. Fabric control mechanism — Run-in, yarn feeding and tension control. Fabric take up and batching mechanisms. Specialty welt knitted fabrics and machines — loop wheel frame, production of fleecy on sinker top m/c. Fleecy interlock, sinker wheel Machine, plush in sinker top latch needle Machine sliver or high pile knitting. Knitted fabric faults and their Remedies

Book References:
1. Textiles: Fiber to Fabric by Corbman, Bernard P
2. The Mechanism of Weaving by Thomas W. Fox
3. Weaving Conservation of Yarn to Fabric by Lord, P.R. & Mohamed, M.H
4. Laboratory Practice in Knitting Technology by L. Kudriavan (Publisher: Mir Publishers.
5. Weaving Conservation of Yarn to Fabric by Lord, P.R.& Mohamed, M.H.
6. Shuttle less looms by J.J. Vincent
7. Repair & Adjustment of Textile Machines

TE 4112 Advanced Fabric Manufacturing (Optional) Sessional

Sessional: Credit Hours- 2
Contact Hours/week 0 +4

Weaving
Detailed study of relevant mechanisms and machinery. Dismantling and reassembling of parts. Operation of machinery, Visit to manufacturing plants study of fabric defects

Knitting
Production of knitted samples with given specifications and study of their dimensional behavior. Adjustment of the machine for the production of fabrics of different GSM. Detailed Sessional study of mechanisms and machinery, Dismantling and reassembling of different parts of machinery. Production of knitted fabric samples containing basic structures.

TE 4111 Advance Yarn Manufacturing (Optional)

Theory: Credit Hours- 4
Contact Hours/week 4 + 0
In depth study of rotor spinning and other modern short staple spinning methods. Comparison of Methods, yarn quality, productions and economics with spinning.

Long staple
Detailed study of modern long staple spinning systems such as recon, spin-grad, wrap spun, core spun and twist less spinning.
Lectures on recently published research and development work in spinning industries in Bangladesh and in other countries for short and long staple materials.

Book References:
- Comparative study in Modern jute Technology by Santosh Kumar Paul.
- (Publisher: Das Gupta & Co. Ltd)

TE 4112 Advance Yarn Manufacturing (Optional) Sessional

Sessional: Credit Hours- 2 Contact Hours/week 0 +4
Sessional processing of different counts of cotton and jute yarns and analyses of yarn specimens. Processing of Man made staple fiber and their blends. Details study of Rotor and other modern short and long staple spinning machines.

TE 4113 Textile Testing and Quality Control-3

Theory: Credit Hours- 4 Contact Hours/week 4 + 0
Quality control charts use of charts and setting of limits. Analyses of variance, acceptance sampling. correlation analyses to determine relationship between various factor, tests of significance. Acceptance tests and inspection of raw materials for each sector of the industry.
Yarn manufacturing - raw cotton/jute/chemical fibers.
Fabric manufacturing - yarns.
Process and finished goods control for each sector of the industry. Effects of process control on costs and quality Parameters measured, Sample sizes, Tests made, Results expected at each stage processing from fiber to finished garment production.

Book References:
1. Process Control in Spinning by A.R. Garde & T.A. Sabramian
2. Technology of Textile Testing and Quality Control by Elliot B. Grover & D.S. Hamby

TE 4114 Textile Testing and Quality Control-3 Sessional

Sessional: Credit Hours- 1 Contact Hours/week 0 +2
Quality control practices for yarn, Grey fabrics, finished fabrics and garments including use of control charts, Industrial visits.

IPE 4111 Production Planning and Control

Theory: Credit Hours- 4 Contact Hours/week 4 + 0
Functions and types of production; production life cycle; capacity planning, process planning; process design; PPC function — Forecasting, Loading, scheduling, dispatching, order control; Line balancing. Plant layout: Plant location factors; Inventory control, Purchasing Principles - make or buy decisions Quality control in production life cycle, Maintenance and productivity.
Work Study
Method study, Purpose and techniques used; Procedure of select, Record, Examine, Develop, Install and Maintain.
Precautions when introducing new methods, Relationship with work measurement.
Work measurement, purpose and techniques used, Rating, Elements, Break points. Basic time. Use of allowances.
Activity sampling. Definition, purpose arid procedures, use of pilot study, interpretation of results Production studies. Machine utilization and operator hours per 100 Kg production).
Machine interference. Materials handling Mechanic 3nd static handling

Book References:
1. Production & Operation Management (2 ed.) by S. N Chary
2. Operation Management (5 ed.) by Heigeh & Render
3. Production & Operation Management by R. Panneerselram
4. Operation Research- An Introduction by Taha
5. Probability & Statistics for Engineers & Scientists by Walpole & Meyer
6. Apparel Manufacturing by Glock, Ruth

HUM 4111 Industrial Economics, Accounting and Marketing

Theory: Credit Hours- 4 Contact Hours/week 4 + 0

Industrial Economics : Types of interest, nominal and effective interest rates, present worth and discount, Types of taxes, Capital gains tax, tax returns, Insurance, types of insurance, Types of depreciation, service life, salvage value, present value, methods for determining depreciation. Profitability, attentive investments and replacements, Mathematical methods for profitability evaluation.

Asset and Cost Accounting
Function and advantage of costing, Methods of cost accountancy. Elements of cost accounting,’ direct and indirect expenditures, cost of overhead and cost accounts and financial accounts for terms. Standard cost preparation of cost sheets and statements, break even analyses, stock taking arid control of stock and stores, payroll, Dummy worker on payroll.

Marketing
Concept, Scope and Functions of marketing tools, product concept, types acne product types of markets, market segmentations, approaches of marketing Sales promotion and advertisement, export marketing. Distribution channel and pricing of product for local and export markets. Export Marketing and documentation methods of market study. Elementary marketing research.

Book References:
1. Advanced Accounting (Vol-1)
2. International Marketing by Cartler
3. Marketing Management by Cartler
5. MS. Peters and K. D. Timmerhaus-Plant design and economics for chin engineering.
B Sc in Textile Engineering
Part-4 Even semester
TE 4211 Special Yarn Manufacturing (Optional)

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
Study of, two-fold manifold cabled and core yarns for particular end uses. Twisting and doubling machines including up-twisters and 2-for-1 twisters. Effects of amount and direction of twist at each twisting stage on strength, elongation, luster and balance twist. Twist setting. Manufacture of fancy yarns. Top-to-tow conversion in Methods of producing textured filament yarn. Effect of process variables on characteristics of textured yarns of twines and ropes.

TE 4212 Special Yarn Manufacturing (Optional) Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2
Sessional application and practice on the above topics.

TE 4211 Special Fabric Manufacturing (Optional)

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
Definition, Structure, Production, Properties, End-uses etc. of Laminates, Tape, Belt, Label, Braid, Lappet swivel; velvets and velveteen. Carpet: Terry Towel; Geo textiles; Medical Textile; Textural Fabrics; Coated and filter fabrics.

TE 4212 Special Fabric Manufacturing (Optional) Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2
Sessional application and practice on the above topics.

TE 4211 Special Wet Processing (Optional)

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
Foam technology in wet processing (foam generation, application, advantages and disadvantages). Solvent dyeing, Dyeing under hypercritical conditions; Computer assisted recipe calculations. Human colour vision, Mesmerism, Tri-chromatic theory of colour vision and colour matching equations. Effluents wet processing, their effects on environment, various types of effluent threatening and T-disposal systems.

TE 4212 Special Wet Processing (Optional) Sessional

Sessional: Credit Hours- 1
Contact Hours/week 0 +2
Sessional application and practice on the above topics.

TE 4211 Special Garments Manufacturing (Optional)

Theory: Credit Hours- 2
Contact Hours/week 2 + 0
Brief description of fashion house in monop and II II (ii fashion It, made clothing industry. Fashion trends in different country traditional including modern ethnic designs. Modern trends in relation to the following: length, silhouette, exposure, colour, cloth texture and cloth design. Modern trends of fashion and design. Physiological process of maintaining constant “core” temperature of human body. Mechanism of heat transfer from human body. Concept of apparel design, heat transfer and comfort. Detail study on thermal, underwear, wind proof garments. Breathable fabric sand garments, fire proof garments, Rain coats, Racing drivers garments; clothing and safely item Jogging suit, space suits and divers suits.
TE 4212 Special Garments Manufacturing (Optional) Sessional
Sessional: Credit Hours- 1 Contact Hours/week 0 +2
Sessional application and practice on the above topics.

TE 4213 Utility Services & Maintenance of Textile Machineries
Theory: Credit Hours- 3 Contact Hours/week 3 + 0
Maintenance-Types of maintenance, planning and organizing maintenance, repair cycle. maintenance stages, lubrication and lubricants, Inspection.
Inventory Management — Types of inventory, cost analyses of inventory, inventory control, economic order quantity (EOQ), economic lot size, lead time, Mean absolute deviation (MAD), Re-order level
Material handling - Conveyors used in textile mill - belt conveyor, chain conveyer, hydraulic, iiess and lift, truck hoist.
Air conditioning - Co condition, psychometric chart, Heating, cooling, dehumidification, humidification, Ventilation, Filtration, Mill illumination.
Ergonomics - Definition, importance and application of Ergonomics to work place and layout.
Machine erection - Floor preparation, foundation, machine fixation, leveling etc.
Safety in textile mill - Industrial hazards, safety rules, factory act, first aid and pollution control.

TE 4214 Utility Services & Maintenance of Textile Machineries Sessional
Sessional: Credit Hours- 1 Contact Hours/week 0 +2
Sessional application and practice on the above topics of respective departmental machineries as follows

Maintenance of Yarn Manufacturing Machinery (Optional)
Safety- Drives to any machines on which maintenance is being carried out should be isolated and machine unable to be switched on. Safety must be sassed. In particular, maintenance of guards, guard door solenoids and position of emergency stop buttons. All maintenance should be related the quality of product from each machine.
Examination of all gearing for wear and correct depth of setting; also flat belt, V-belt, Tape, Rope in Chain drives for wear, correct setting and slippage where appropriate. Positioning of oiling and greasing points; schedules for cleaning, Oiling and Greasing, scouring arid re-setting schedules
Blow-room: Inspection for wear and setting of beater bars, lattices, regulating and lap forming.
Draw frames: Maintenance of drafting system, slop mechanisms, Comber check cylinder half laps, tri combs and brushes for wear, check and adjust all settings, care of drafting system.
Speed frames: Maintenance of drafting systems, rings and travelers, spindles, drive to ring rail: Rotors spinning frames: Maintenance of opening fuller rotor driving systems, suction unit.

Book References:
1. Technology of Textile Testing and Quality Control by Elliot B. Grover OS. Hamby

Maintenance of Fabric Manufacturing Machinery (Optional)
Through understanding of different preparatory and fabric manufacturing machinery.
To become familiar with various parts of the machines
To become familiar with the maintenance tools and their functions, Cleaning, Oiling/Lubricating an greasing of various machine parts. Unclear the basic principles of tightening and loosening if nut-bolt, screw, belt, etc. and skill development thereof. Proper meshing of the gears, putting, on and putting off the belts etc. locking / linking of cam, cone, pulley, toothed gear etc. Fitting of bush, bearing collar and bracket. Systems of dismantling and reassembling of machine parts.
Changing and setting of various machine parts and observing their effects on changing. Overhauling and erecting of preparatory and fabric manufacturing machinery.
Book References:
1. Technology of Textile Testing and Quality Control by Elliot B. Grover D.S. Hamby

Maintenance of Wet processing Machinery (Optional)
Preparatory machineries: Maintenance of singeing, kier boiler, J-box, Rope wasting machines boiler.
Finishing machineries: Maintenance of different padding mangles, Dying machineries, Stenter Mercerizing machines, Calendaring and folding machines.
Printing machineries: Maintenance of different roller printing and screen printing machineries.
Laboratory machineries: Maintenance of different laboratory machineries.

Book References:
- Technology of Pi by Prof. V.A. Shenai.

Maintenance of Garments Manufacturing Machinery (Optional)
Repair, Maintenance, setting arid replacement of different parts of rotary knife, Straight Knife, Band knife, Die cutting machine, Notches and drill machines, Repair maintenance, setting and replacement of different parts of lockstitch, Blind stitch, Chain stitch, Over edge stitch and flat lock sewing machines Repair, maintenance and setting of fusing machines and pressing machines.

TE 4216 Project Work
Sessional: Credit Hours- 4 Contact Hours/week 0 +8
For successful completion of course work every students shall submit a project report on his project work, which would be selected and approved by the department. Every candidate shall be required to appear at an comprehensive oral examination on a date fixed by the head of the department and must satisfy the examiners that he is capable of intelligently applying the results of this research to the solution of problems of undertaking independent work and also afford evidence of satisfactory knowledge related to the theory and technique used in his research work.

TE 4218 Industrial Attachment
Sessional: Credit Hours- 8 Contact Hours/week 0 +16
For Industrial training or internship, the students will be placed in selected textile mills or organizations for eight weeks. On completion of the internship, the student will prepare and submit a industrial training report for assessment & examination.

TE 4210 Comprehensive Viva
Credit Hours- 4
A Comprehensive Viva will be taken for all students though who compete formalities by the head of the respective department.